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Abstract. In contrast to a stationary Gaussian random function of areal variable which is free
to have any correlation function, the closest analogous analytic random function in thecomplex
plane has no true freedom—it is (statistically) unique. Since it has arisen only recently, as an
apparently universal feature in the physical context of quantum chaos, I refer to it here as ‘the
chaotic analytic function’. I note that it is implied by the assumption that a quantum chaotic
wavefunction has Gaussian randomness and has a constant value for the average of its Wigner
function in phase space. Interpreted literally this shows that the chaotic analytic function is
the Bargmann function of a pure ‘white noise’ wavefunction. More physically, if ‘constant’ is
replaced by ‘smooth on the scale of a Planck area’, these assumptions are the semiclassical ones
made by Berry for chaotic eigenstates. The analysis shows that the chaotic analytic function is
still obtained semiclassically.

A real stationary Gaussian random functionψ(x) with zero mean,〈ψ(x)〉 = 0, is fully
described by its correlation function〈ψ(0)ψ(x)〉. This correlation function, however, is free
to have any form (subject to having a positive Fourier transform). The closest analogue of
such a random function in the complex planeψ(z) is, in contrast, greatly restricted by the
requirement of analyticity, indeed it has no true freedom at all. It is (statistically) unique
in the same sense as ‘the Poisson process’, or ‘the thermal (black body) electromagnetic
field’ are unique, having no parameters (except size). Since it has arisen only recently, as
an apparently universal feature in the physical context of quantum chaos [1–4] I refer to it
here as ‘the chaotic analytic function’.

The aim, then, is first to derive the chaotic analytic function from the purely
mathematical ‘closest analogue’ standpoint just mentioned. Next, separately, I review the
quantum mechanical properties of the Bargmann function [5] of a quantum state. Then I
deduce that the chaotic analytic function is formally the Bargmann function of an artificial
quantum state whose wavefunction is pure ‘white noise’ (previous work closely related to
this ‘white noise’ conclusion, by Leboeuf [15] and by Nonnenmacher and Voros [4], is
mentioned at the end of (ii) below). This observation alone, however, does not explain
why the chaotic analytic function should be universal as the Bargmann function of chaotic
quantum states. In (i) I show that under the physically natural assumptions of Berry [6] about
the wavefunction of such a state, the chaotic analytic function still results semiclassically.

The uniqueness of the chaotic analytic function is reminiscent of a topic in standard (non-
random) complex variable theory. The mere requirement of two-dimensional periodicity in
the complex plane leads to a small class of functions—the elliptic functions. The comparison
also illustrates another key point. The elliptic functions are not analytic everywhere, they
have poles. If a function is to be analytic everywhere (‘entire’, no singularities except
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at infinity), it is not possible for the function itself to be periodic (unless it is trivially a
constant) since its modulus must not have maxima. However its zero points can be, lying
on a lattice, and fully characterizing the function by the Weierstrass product theorem. The
functions with this property are the theta functions and the elliptic functions are products
of ratios of them.

Likewise for the Gaussian random function of a complex variable, if it is to be
everywhere analytic, itcannotbe stationary in the complex plane. However its zero points,
which fully characterize it,can be a statistically stationary isotropic distribution of points
(thus this zero points ‘footprint’ is really more fundamental than the function itself). This is
as close as one can get to ‘being stationary’ in the complex plane, and is the main defining
property of the chaotic analytic function. In both the theta function case and the chaotic
analytic function case there is a smooth ‘envelope’ functiong(z, z∗) (non-analytic because
of the z∗) for which g|ψ(z)|2 is respectively periodic and stationary in the complex plane
(see (4) below).

The chaotic analytic function, then, is the (zero mean) analytic Gaussian random function
ψ(z) which is statistically isotropic about the origin and has a stationary distribution of
zero points in the complex plane. It is fully characterized by its correlation function
〈ψ(z1)ψ(z2)

∗〉 which is now derived. The mean density of zero pointsρ(z) at z is given
at the end of this letter:ρ(z) = π−1∂2 log〈ψ(z)ψ(z)∗〉/∂z∂z∗ [2, 4]. Stationarity requires
that ρ is a constant which will be taken asπ−1 (conventional in the quantum notation
later) so〈ψ(z)ψ(z)∗〉 = ψ2

0 exp[zz∗ + αz+ βz∗], whereψ2
0 ≡ 〈ψ(0)ψ(0)∗〉. The statistical

isotropy ofψ about the origin requiresα = β = 0, so 〈ψ(z)ψ(z)∗〉 = ψ2
0 exp[zz∗], also

〈ψ(z)ψ(z)〉 = 0. Being analytic,ψ(z) has a Taylor expansion about the origin,

ψ(z) = ψ0

∞∑
n=0

anz
n. (1)

Substituting this into equation〈ψ(z)ψ(z)∗〉 = ψ2
0 exp[zz∗], implies that the complex

coefficientsan (which are Gaussian distributed sinceψ(z) is Gaussian) obey

〈ana∗m〉 = δnm/n! and 〈anam〉 = 0. (2)

Finally, using (1) to expandψ(z1)ψ(z2)
∗ and (2) to average it gives

〈ψ(z1)ψ(z2)
∗〉 = ψ2

0 exp[z1z
∗
2] and 〈ψ(z1)ψ(z2)〉 = 0 (3)

fully describing the chaotic analytic function.
When |ψ(z)|2 is multiplied by the envelope functiong(z, z∗) = ψ2

0/〈ψ(z)ψ(z)∗〉 =
exp[−zz∗] a positive real isotropic stationary random function in the complex plane is
produced (figure 1):

H(z) ≡ exp[−zz∗]|ψ(z)|2. (4)

(This is not Gaussian because of the power two, and not analytic because of the complex
conjugates.) The correlation function ofH is easily found, by using the rule (10) for
Gaussian random functions:

〈H(z1)H(z2)〉 = ψ4
0 [1+ e−|z1−z2|2]. (5)

In the context of quantum mechanics, setting aside randomness, letψ(z) denote the
‘Bargmann function’ of the quantum state|ψ〉, whose relevant properties I now review. In
terms of the position representationψ(q)(≡ 〈q|ψ〉), taking h̄ = 1 here and henceforth,

ψ(z) = 1

π1/4
e

1
2z

2
∫ ∞
−∞

ψ(q)e−
1
2 (q−

√
2z)2 dq. (6)
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Figure 1. Contour plot ofH(z) = |ψ(z)|2 exp(−zz∗) in the complex plane, whereψ(z) is the
chaotic analytic function.H(z) is an isotropic stationary random function. Low values are dark
(contour crowding excepted).

Thus, apart from a multiplying factor and a scaling factor
√

2, the Bargmann function is an
analytic continuation into the complex plane of the convolution ofψ(q) with a Gaussian.
More physically it is (a factor times) the inner product of|ψ〉 with a ‘coherent state’
associated withz = x + iy: a ground state of the harmonic oscillator with Hamiltonian
1
2(p

2+ q2) displaced in position by
√

2x, and in momentum by−√2y.
As a quantum object associated with phase space(q, p), the Bargmann functionψ(z),

was recognized by Voros [7] as a tool for semiclassical mechanics and quantum chaos
[1, 3, 4, 8–13]. It complements the other well known quantum phase space object—the
Wigner functionW(q, p) which is a real function in phase space

W(q, p) ≡ 1

2π

∫ ∞
−∞

ψ

(
q + 1

2
Q

)
ψ

(
q − 1

2
Q

)∗
e−ipQ dQ. (7)

The two functions,ψ(z) andW(q, p), are related via the ‘Husimi function’ [14] in
phase space defined as the convolution ofW with the function(π)−1 exp(−q2− p2):

1

π

∫ ∞
−∞

∫ ∞
−∞

W(q ′, p′)e−(q−q
′)2−(p−p′)2 dq ′ dp′. (8)

Remarkably, as a standard algebraic manipulation shows, this Husimi function is just that
function H defined in (4), with

√
2z = q − ip. This shows that the Husimi function is

everywhere positive (unlike the Wigner function). One final property of the Bargmann
function ψ(z) will be useful: for the quantum state|n〉 which is thenth excited energy
eigenstate of the harmonic oscillator1

2(q
2+ p2), the Bargmann function is

ψ(n)(z) = zn√
n!
. (9)
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Having derived the chaotic analytic function as the closest analogue of a stationary Gaussian
random function and recalled the required features of the quantum Bargmann function I
move on now to the connection between them.

Consider any (zero mean) Gaussian random wavefunctionψ(q), stationary or otherwise,
but whose overall phase is uniformly random. It is fully described by its correlation function
〈ψ(q1)ψ(q2)

∗〉 (since the unconjugated pair〈ψ(q1)ψ(q2)〉 is zero by phase randomness).
Higher moments are given by the pair product decomposition rule for Gaussian random
functions. For example, using subscripts for brevity,

〈ψ1ψ
∗
2ψ3ψ

∗
4 〉 = 〈ψ1ψ

∗
2 〉〈ψ3ψ

∗
4 〉 + 〈ψ1ψ

∗
4 〉〈ψ3ψ

∗
2 〉 + 〈ψ1ψ3〉〈ψ∗2ψ∗4 〉 (10)

where the final term is zero. This is to be used to obtain first the correlation function for
the Wigner function, and then that of the Husimi function for comparison with the chaotic
analytic result (5).

Taking the average of the definition (7) of the Wigner functionW(q, p) shows that
the phase space function〈W(q, p)〉, is the Fourier transform of the correlation function
of ψ , and therefore fully describes its statistics. In particular the mere average〈W(q, p)〉
fully determines all the higher correlation statistics ofW . The correlation function〈W1W2〉
(meaning〈W(q1, p1)W(q2, p2)〉) of W involves the product of fourψ which reduces by
(10) to two terms. After a little algebra one obtains

〈W1W2〉 = 〈W1〉〈W2〉 + 2

π

∫ ∫
〈W1′ 〉〈W2′ 〉ei[(1−2)∧(1′−2′)]δ(1+ 2− 1′ − 2′) d21′ d22′. (11)

Thus, contributing to the correlation at points 1 and 2 in phase space, are the values of〈W 〉
at all pairs of points 1′ and 2′ with the same midpoint as 1 and 2; they form a parallelogram
12′21′. They contribute with a phase equal to the cross product of the diagonal vectors or
twice the parallelogram area.

The correlation function for the Husimi function (the Wigner function blurred with the
Gaussian (8)) is obtained directly from (11)

〈H1H2〉 = 1

π2

∫ ∫
〈W1W2〉e−(1−1′)2e−(2−2′)2 d21′ d22′ (12)

= 〈H1〉〈H2〉 + 2

π

∫ ∫ ∫ ∫
〈W1′′ 〉〈W2′′ 〉ei(1′−2′)∧(1′′−2′′)e−(1−1′)2e−(2−2′)2

×δ(1′ + 2′ − 1′′ − 2′′)d21′ d22′ d21′′ d22′′ (13)

= 〈H1〉〈H2〉 + 1

π2

∫ ∫
〈W1′′ 〉〈W2′′ 〉ei(1−2)∧(1′′−2′′)e−

1
2 (1
′′−2′′)2

×e−
1
2 ((1+2−1′′−2′′)2 d21′′ d22′′. (14)

The connection with the pure chaotic analytic function is now straightforward; if the average
Wigner function〈W(q, p)〉 is a constant throughout phase space, then〈H 〉 = 〈W 〉 and (14)
reduces to the Husimi correlation (5) for the chaotic analytic function (with

√
2z = q− ip).

This is enough; it means that|〈ψ(z1)ψ(z2)
∗〉| = ψ2

0 | exp(z1z
∗
2)|, and the modulus of an

analytic function fixes the function itself (up to overall phase) so the modulus signs can be
removed. Thus, the assumption that the wavefunctionψ(q) is Gaussian random and that its
associated average Wigner function is constant leads, exactly, to the Bargmann function for
the quantum state being the chaotic analytic function. By taking the average of (7) it follows
that the correlation function for the wavefunction is the Fourier transform of a constant,
namely a delta function. Thus, the chaotic analytic function is the Bargmann function of
pure Gaussian ‘white noise’,〈ψ(q1)ψ(q2)

∗〉 = δ(q1−q2). There follow several remarks on
this result.
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(i) Of course an everywhere constant〈W(q, p)〉 is quite unphysical and correspondingly
the ψ(z) for a physical system could not be the chaotic analytic function throughout the
whole complex plane. Normally,W is zero forp→∞, for instance. One might be tempted
to argue, though, that the wavefunctionψ(q) of a chaotic state simulates white noise in
the semiclassical limit and that this therefore suffices to explain whyψ(z) is, apparently
universally, the chaotic analytic function. This would be unjustified, however, because the
form of W (or ψ(z)) in the remote regions (largep, for instance) probes exactly the fine
structure of the simulated white noiseψ(q)—it probes its ‘colour’. To be consistent with
the apparent universality of the chaotic analytic function the association between〈W 〉 and
ψ(z) (or rather the correlation statistics ofψ(z)) should be alocal one in phase space. To
verify this I examine first the form of the Wigner correlation function.

From the comments following (11) it is clear that the Wigner correlation function is
influenced by the behaviour of〈W 〉 at arbitrarily remote points as well as near ones. For
example, suppose〈W(q, p)〉 = 1 in the discq2 + p2 < r2, and zero outside, which is
approximately realized by truncating the series (1) (so that, in the language of equation (9),
high oscillator states are eliminated). Take a simple circumstance in which the midpoint
between points 1 and 2 lies at the origin. The formula (11) then reduces to the two-
dimensional Fourier transform of a disc which is the Bessel functionJ0(2r|1− 2|). The
larger the circle radiusr, the smaller the scale of correlation function. The local behaviour
of the Wigner correlation function depends intimately on the global behaviour of its average
〈W 〉. The correlation statistics ofW are not universal.

In contrast the correlation statistics of the Husimi functionH are universal. This follows
by examining the integral for the Husimi correlation function (14). The two real exponents
add to give−[1′′ − 1

2(1+ 2)]2− [2′′ − 1
2(1+ 2)]2 so that the integral only strongly samples

points 1′′ and 2′′ in the neighbourhood of the midpoint of 1 and 2. Therefore only the local
behaviour of〈W 〉 matters: further away from this midpoint than a distance of order unity
the value of〈W 〉 is irrelevant to the integral. If the scale over which〈W 〉 varies is much
larger than this, as it is semiclassically since the Planck scale is unity by construction,〈W 〉
can be treated as a constant. In this case the Husimi correlation function is once again given
by (5) and the local Bargmann functionψ(z) is guaranteed to be chaotic analytic.

This, then, is the desired conclusion. The two assumptions, that the wavefunctionψ(q)

is Gaussian random, and that the average Wigner function is smooth on the scale of a
Planck area (i.e. locally constant) were just the semiclassical ones made by Berry [6] for
chaotic quantum states. More accurately he took the local average Wigner function to be
proportional to the singular functionδ(H(q,p)−E) in 2N -dimensional phase space. This
requires reduction to a two-dimensional phase space by section/projection in order to obtain
a Bargmann function. The reduction produces the smooth average Wigner function required.

Further comments on the above conclusion that the Bargmann functionψ(z) is
semiclassically the chaotic analytic function may be in order. Its intensity, as measured by
〈|ψ(z)|2〉 exp(−zz∗)(≡ H ≈ 〈W 〉), will vary classically in phase space. But everywhere,
locally, on a scale which is classically small but much larger than the Planck area(∼1),
the Bargmann function will be the chaotic analytic function with the standard correlation
scale (mean density of zero pointsπ−1 in the complex plane, or(2π)−1 in the phase
space plane). Any deviations from the chaotic analytic function vanish semiclassically.
Small though such deviations must be, they have important consequences. For example as
pointed out by Nonnenmacher and Voros [4] the density deviationρ − π−1 of zero points
equals∇2 log(H), so that an exponentially small deviation can cause a substantial change
in the intensity〈H 〉 over a global scale. Conversely since〈H 〉 usually does vary globally
there must exist semiclassically small density deviations.
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(ii) The white noise wavefunction result can be anticipated by another argument which it
is worth outlining briefly. Directly from (1), (2) and (9) the chaotic analytic function is the
Bargmann function of the quantum state which is a superposition of all the energy eigenstates
|n〉 of a harmonic oscillator12(p

2 + q2) with equally distributed independent Gaussian
random complex coefficientsbn. This superposition has6〈〈q2|n〉bnb∗n〈n|q1〉〉 = δ(q1 − q2)

(because the average of the central operator is the identity operator) and the white noise result
is demonstrated. Moreover, the choice of this harmonic oscillator basis is seen to be quite
unnecessary—any complete orthonormal basis|n〉 (on the full q axis) can be superposed
with equally distributed independent complex Gaussian random coefficents to obtain white
noise and hence the chaotic analytic function. Another way to say this is that the chaotic
analytic function is invariant under any unitary transformation (i.e. unitary change of basis).

The invariance property answers an awkward question that arises when using (6) to
construct the Bargmann functionψ(z) for a chaotic quantum stateψ(q). The system
will generally have no natural choice of harmonic oscillator Hamiltonian—why should one
choose the ‘unit frequency’ case,1

2(p
2+ q2) of (6)? One need not: if theψ(z) is going to

be the chaotic analytic function as it ought, any choice will do.
To conclude this remark I summarize the relevant parts of previous work by others

in the same direction. The invariance property has been mentioned before by Leboeuf
[15] with reference to the eigenstate of a random matrix which is a model for a chaotic
wavefunction. He notes that these have Gaussian randomness in common with those of the
Berry assumptions, but contrasts the correlation calculations in real space and the complex
plane. Nonnenmacher and Voros [4] consider a ‘statistical model’ of a wavefunction as a
Fourier series of a finite numberN of terms with independent complex Gaussian random
coefficients. In the limitN → ∞ (which would correspond to a ‘periodic’ white noise)
they show that the Bargmann function approaches the chaotic analytic function (periodized,
of course, but on a scale of many correlation lengths).

(iii) A special, but physically important, case arises if the chaotic wavefunctionψ(q)

is real. Thenψ(z) approximates the chaotic analytic function except near the real
axis (within a distance of order unity). The Wigner and Husimi correlation functions,
(11) and (14), have an extra integral, arising from the final term of (10), in which
the vector 2≡ (q2, p2) is replaced by its reflection in theq axis 2∗ ≡ (q2,−p2).
(The Wigner and Husimi functions are symmetric under this reflection for realψ(q).)
Accordingly, in the local constancy approximation for〈W 〉, the Husimi correlation becomes
ψ4

0(1+ exp−|z1− z2|2+ exp−|z1− z∗2|2) instead of (5). The distribution of zero points of
ψ(z) in the case of the realψ(q) case was found by Prosen [16], differing from that of the
chaotic analytic function near the real axis. Prosen, incidentally, also found the parameter
dependence of the zero point statistics [17] for both the complex and real cases.

Finally the derivation [2, 18, 19] of the density of the zero points of a complex Gaussian
random function is recalled. In terms of the joint probabilityP(ψ,ψ ′) of the value of
the functionψ and its derivativeψ ′ ≡ dψ/dz at some pointz, the probability of a
zero point in the region d2z is ρ d2z whereρ = ∫

P(0, ψ ′)|ψ ′|2 d2ψ ′. But P(ψ,ψ ′) =
π−2 detM−1 exp[−(ψ,ψ ′∗)M−1(ψ,ψ ′∗)] whereM is the 2× 2 matrix

M =
[ 〈ψψ∗〉 〈ψψ ′∗〉
〈ψ ′ψ∗〉 〈ψ ′ψ ′∗〉

]
≡
[
A B

B∗ C

]
. (15)

So

ρ =
∫
P(0, ψ ′)|ψ ′|2 d2ψ ′ = coeff of µµ∗ in −

∫
P(0, ψ ′) exp[i(µ∗ψ ′ + µψ ′∗)] d2ψ ′.

(16)
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The integrals are Gaussian and yield

ρ = [C − B∗A−1B]/πA = π−1∂2 log〈ψ(z)ψ(z)∗〉/∂z∂z∗ (17)

where the compact second form here was observed in [4]. This mean density is all
that was required, but I pursue the account briefly to describe the correlation or joint
probability densityρ(z1, z2) of zero points atz1 and z2 which gives an indication of the
statistical arrangement of the points [2]. Generalizing (16) withA, B, andC themselves
representing 2× 2 matrices,Aij ≡ 〈ψiψ∗j 〉 etc, gives the required generalization of (17),
ρ(z1, z2) = per[C − B†A−1B]/π2 detA, where per is the ‘permanent’ of the matrix.
Substituting (3) one obtainsρ(z1, z2) = g(|z1− z2|/

√
2) where

g(r) = [(sinh2 r2+ r4) coshr2− 2r2 sinhr2)]/ sinh3 r2. (18)

(This is equation (12) of [2]. In the preceding line of this reference the quoted argument
of g is too large by a factor

√
2. The line is unfortunately repeated in the abstract but

affects nothing else.) The functiong(r) is quadratic at the origin indicating ‘repulsion’ of
the points and has a single small hump before decaying exponentially to unity at infinity.

I am grateful for the hospitality of the physics department of Carleton College, Northfield,
Minnesota, where the work for this letter was done.
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